Как правильно сделать деление столбиком. Учим школьника делению в столбик

Деление многозначных или многоразрядных чисел удобно производить письменно в столбик . Давайте разберем, как это делать. Начнем с деления многоразрядного числа на одноразрядное, и постепенно увеличим разрядность делимого.

UNTOXIC УНИЧТОЖАЕТ ПАРАЗИТОВ И ВОССТАНАВЛИВАЕТ ОРГАНИЗМ
9 часов назад
ЭФФЕКТИВНОЕ И БЕЗОПАСНОЕ УДАЛЕНИЕ ЛЮБЫХ ПЯТЕН
9 часов назад

Итак, поделим 354 на 2 . Для начала разместим эти числа как показано на рисунке:

Делимое размещаем слева, делитель справа, а частное будем записывать под делителем.

Теперь начинаем делить делимое на делитель поразрядно слева на право. Находим первое неполное делимое , для этого берем первый слева разряд, в нашем случае 3 и сравниваем с делителем.

3 больше 2 , значит 3 и есть неполное делимое. Ставим точку в частном и определяем, сколько ещё разрядов будет в частном – столько же, сколько осталось в делимом после выделения неполного делимого. В нашем случае в частном столько же разрядов, сколько в делимом, то есть старшим разрядом будут сотни:

Для того чтобы 3 разделить на 2 вспоминаем таблицу умножения на 2 и находим число при умножении которого на 2 получим наибольшее произведение, которое меньше 3.

2 × 1 = 2 (2 3)

2 меньше 3 , а 4 больше, значит, берем первый пример и множитель 1 .

Записываем 1 в частное на место первой точки (в разряд сотен), а найденное произведение записываем под делимым:

Теперь находим разность, между первым неполным делимым и произведением найденного разряда частного и делителем:

Полученное значение сравниваем с делителем. 15 больше 2 , значит, мы нашли второе неполное делимое. Для того чтобы найти результат деления 15 на 2 вновь вспоминаем таблицу умножения на 2 и находим наибольшее произведение, которое меньше 15 :

2 × 7 = 14 (14 15)

Искомый множитель 7 , записываем его в частное на место второй точки (в десятки). Находим разность между вторым неполным делимым и произведением найденного разряда частного и делителя:

Продолжаем деление, для чего находим третье неполное делимое . Спускаем следующий разряд делимого:

Делим неполное делимое на 2, полученное значение ставим в разряд единиц частного. Проверим правильность деления:

Результат деления третьего неполного делимого на делитель пишем в частное, находим разность:

Разность мы получили равную нулю, значит деление произведено правильно .

Усложним задачу и приведем другой пример:

Запишем наш пример в столбик и определим первое неполное частное:

Разряд тысяч делимого составляет 1 , сравниваем с делителем:

1 5 – мы нашли неполное делимое.

Делим 10 на 5 , получаем 2 , записываем результат в частное. Разность между неполным делимым и результатом умножения делителя и найденного разряда частного.

0 мы не пишем, опускаем следующий разряд делимого – разряд десятков:

Сравниваем второе неполное делимое с делителем.

2 Письменное деление на двузначное число

Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

МОЩНАЯ ЭРЕКЦИЯ 24 ЧАСА ПОСЛЕ ПРИЕМА...
8 часов назад
UNTOXIC УНИЧТОЖАЕТ ПАРАЗИТОВ И ВОССТАНАВЛИВАЕТ ОРГАНИЗМ
6 часов назад

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно

Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.

Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375

Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).

Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Азы математики

Сначала убедитесь в том, что ваш ребенок усвоил более простые операции: сложение, вычитание, умножение. Без этих азов ему будет сложно понять деление.

Если вы видите какие-то пробелы в знаниях, то повторите предыдущий материал.

Принцип деления

Прежде чем приступать к объяснению алгоритма деления следует сформировать у ребенка понимание самого процесса.

Объясните маленькому ученику, что «деление» – это разделение единого целого на равные части.

Возьмите коробку карандашей, которая будет выступать единым целым (можно взять любые предметы – кубики, спички, яблоки и т. д.), и предложите ребенку разделить их поровну между собой и вами. Затем, попросите его сосчитать сколько карандашей было изначально в коробке и сколько он раздал каждому.

По мере понимания ребенка, увеличивайте число предметов и количество участников. Далее, следует отметить, что не всегда получается разделить поровну и некоторые предметы остаются «ничейными». Например, предложите разделить 9 груш между бабушкой, дедушкой, папой и мамой. Ребенок должен усвоить, что все получат по 2 груши, а одна окажется в остатке.

Взаимосвязь с таблицей умножения

Покажите ребенку, что «деление» противоположное действие «умножению».

  • Возьмите таблицу умножения и покажите ученику взаимосвязь между двумя операциями.
  • Например, 4х5=20. Напомните ребенку, что число 20 результат произведения двух чисел 4 и 5.
  • Затем, наглядно покажите, что деление противоположный процесс: 20/5=4, 20/4=5.

Обратите внимание ребенка на то, что правильным ответом всегда будет множитель, не участвующий в делении.

  • Разберите другие примеры.

Если ваш ребенок отлично будет знать таблицу умножения, и поймет взаимосвязь между двумя математическими операциями, он легко освоит деление. Стоит ли запоминать ее в обратном порядке – выбор за вами.

Определение понятий

Перед началом занятий определите и выучите названия элементов, которые участвуют в процессе деления.

«Делимое» – число, которое следует разделить.

«Делитель» – это число на которое разделяется «делимое».

«Частное» – это результат, который получаем в процессе вычисления.

Для наглядности можете привести пример:

На день рождения сына/дочки вы купили 96 конфет, чтобы ребенок угостил своих друзей. Всего приглашенных – 8.

Объясните, что пакет с 96 конфетами – это «делимое». Восьмеро детей – «делитель». А количество конфет, которое получит каждый ребенок – «частное».

Алгоритм деления в столбик без остатка

Теперь покажите ребенку на примере о конфетах алгоритм вычисления.

  • Возьмите чистый лист бумаги/тетрадь и напишите цифры 96 и 8.
  • Разделите их перпендикулярными линиями.

  • Покажите наглядно элементы.
  • Укажите на то, что результат вычисления записывается под «делителем», а вычисления – под «делимым».
  • Предложите маленькому ученику посмотреть на число 96 и определить цифру, которая больше 8.
  • Из двух цифр 9 и 6, такой цифрой окажется 9.
  • Спросите ребенка, сколько цифр 8 может «уместиться» в 9. Малыш, помня таблицу умножения, легко определит, что только раз. Поэтому запишите цифру 1 под подчеркиванием.
  • Далее, умножьте делитель 8 на результат 1. Полученную цифру 8 запишите под первой цифрой делимого числа.
  • Между ними поставьте знак «вычитания», и подведите итог. То есть, если от 9 отнять 8 получиться 1. Запишите результат.

На этом этапе объясните ребенку, что результат вычитания всегда должен быть меньше делителя. Если вышло наоборот, значит, малыш неправильно определил сколько 8 содержится в 9.

КАК УСИЛИТЬ ЯРКОСТЬ ОРГАЗМА ДО 10 РАЗ
8 часов назад
ЖИР ГОРИТ БЕЗ ДИЕТ И ТРЕНИРОВОК
9 часов назад

Читайте также